Copied to
clipboard

G = C334C12order 324 = 22·34

4th semidirect product of C33 and C12 acting via C12/C2=C6

metabelian, supersoluble, monomial

Aliases: C334C12, He35Dic3, C334Dic3, (C3×He3)⋊5C4, C3⋊(C32⋊C12), C335C42C3, (C6×He3).3C2, (C32×C6).7C6, (C32×C6).9S3, C2.(He34S3), C6.9(C32⋊C6), (C2×He3).10S3, C323(C3×Dic3), C321(C3⋊Dic3), C6.2(C3×C3⋊S3), (C3×C6).9(C3⋊S3), (C3×C6).19(C3×S3), C3.2(C3×C3⋊Dic3), SmallGroup(324,98)

Series: Derived Chief Lower central Upper central

C1C33 — C334C12
C1C3C32C33C32×C6C6×He3 — C334C12
C33 — C334C12
C1C2

Generators and relations for C334C12
 G = < a,b,c,d | a3=b3=c3=d12=1, ab=ba, ac=ca, dad-1=a-1c, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 468 in 108 conjugacy classes, 34 normal (16 characteristic)
C1, C2, C3, C3, C3, C4, C6, C6, C6, C32, C32, C32, Dic3, C12, C3×C6, C3×C6, C3×C6, He3, He3, C33, C33, C3×Dic3, C3⋊Dic3, C2×He3, C2×He3, C32×C6, C32×C6, C3×He3, C32⋊C12, C3×C3⋊Dic3, C335C4, C6×He3, C334C12
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, C3×S3, C3⋊S3, C3×Dic3, C3⋊Dic3, C32⋊C6, C3×C3⋊S3, C32⋊C12, C3×C3⋊Dic3, He34S3, C334C12

Smallest permutation representation of C334C12
On 108 points
Generators in S108
(1 84 95)(2 15 104)(3 47 35)(4 86 75)(5 107 18)(6 26 38)(7 78 89)(8 21 98)(9 41 29)(10 92 81)(11 101 24)(12 32 44)(13 83 59)(14 62 45)(16 50 74)(17 48 65)(19 77 53)(20 68 39)(22 56 80)(23 42 71)(25 66 76)(27 54 97)(28 79 69)(30 100 57)(31 72 82)(33 60 103)(34 73 63)(36 106 51)(37 87 52)(40 55 90)(43 93 58)(46 49 96)(61 94 102)(64 105 85)(67 88 108)(70 99 91)
(1 91 107)(2 108 92)(3 93 97)(4 98 94)(5 95 99)(6 100 96)(7 85 101)(8 102 86)(9 87 103)(10 104 88)(11 89 105)(12 106 90)(13 65 79)(14 80 66)(15 67 81)(16 82 68)(17 69 83)(18 84 70)(19 71 73)(20 74 72)(21 61 75)(22 76 62)(23 63 77)(24 78 64)(25 45 56)(26 57 46)(27 47 58)(28 59 48)(29 37 60)(30 49 38)(31 39 50)(32 51 40)(33 41 52)(34 53 42)(35 43 54)(36 55 44)
(1 62 60)(2 49 63)(3 64 50)(4 51 65)(5 66 52)(6 53 67)(7 68 54)(8 55 69)(9 70 56)(10 57 71)(11 72 58)(12 59 61)(13 94 32)(14 33 95)(15 96 34)(16 35 85)(17 86 36)(18 25 87)(19 88 26)(20 27 89)(21 90 28)(22 29 91)(23 92 30)(24 31 93)(37 107 76)(38 77 108)(39 97 78)(40 79 98)(41 99 80)(42 81 100)(43 101 82)(44 83 102)(45 103 84)(46 73 104)(47 105 74)(48 75 106)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)

G:=sub<Sym(108)| (1,84,95)(2,15,104)(3,47,35)(4,86,75)(5,107,18)(6,26,38)(7,78,89)(8,21,98)(9,41,29)(10,92,81)(11,101,24)(12,32,44)(13,83,59)(14,62,45)(16,50,74)(17,48,65)(19,77,53)(20,68,39)(22,56,80)(23,42,71)(25,66,76)(27,54,97)(28,79,69)(30,100,57)(31,72,82)(33,60,103)(34,73,63)(36,106,51)(37,87,52)(40,55,90)(43,93,58)(46,49,96)(61,94,102)(64,105,85)(67,88,108)(70,99,91), (1,91,107)(2,108,92)(3,93,97)(4,98,94)(5,95,99)(6,100,96)(7,85,101)(8,102,86)(9,87,103)(10,104,88)(11,89,105)(12,106,90)(13,65,79)(14,80,66)(15,67,81)(16,82,68)(17,69,83)(18,84,70)(19,71,73)(20,74,72)(21,61,75)(22,76,62)(23,63,77)(24,78,64)(25,45,56)(26,57,46)(27,47,58)(28,59,48)(29,37,60)(30,49,38)(31,39,50)(32,51,40)(33,41,52)(34,53,42)(35,43,54)(36,55,44), (1,62,60)(2,49,63)(3,64,50)(4,51,65)(5,66,52)(6,53,67)(7,68,54)(8,55,69)(9,70,56)(10,57,71)(11,72,58)(12,59,61)(13,94,32)(14,33,95)(15,96,34)(16,35,85)(17,86,36)(18,25,87)(19,88,26)(20,27,89)(21,90,28)(22,29,91)(23,92,30)(24,31,93)(37,107,76)(38,77,108)(39,97,78)(40,79,98)(41,99,80)(42,81,100)(43,101,82)(44,83,102)(45,103,84)(46,73,104)(47,105,74)(48,75,106), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)>;

G:=Group( (1,84,95)(2,15,104)(3,47,35)(4,86,75)(5,107,18)(6,26,38)(7,78,89)(8,21,98)(9,41,29)(10,92,81)(11,101,24)(12,32,44)(13,83,59)(14,62,45)(16,50,74)(17,48,65)(19,77,53)(20,68,39)(22,56,80)(23,42,71)(25,66,76)(27,54,97)(28,79,69)(30,100,57)(31,72,82)(33,60,103)(34,73,63)(36,106,51)(37,87,52)(40,55,90)(43,93,58)(46,49,96)(61,94,102)(64,105,85)(67,88,108)(70,99,91), (1,91,107)(2,108,92)(3,93,97)(4,98,94)(5,95,99)(6,100,96)(7,85,101)(8,102,86)(9,87,103)(10,104,88)(11,89,105)(12,106,90)(13,65,79)(14,80,66)(15,67,81)(16,82,68)(17,69,83)(18,84,70)(19,71,73)(20,74,72)(21,61,75)(22,76,62)(23,63,77)(24,78,64)(25,45,56)(26,57,46)(27,47,58)(28,59,48)(29,37,60)(30,49,38)(31,39,50)(32,51,40)(33,41,52)(34,53,42)(35,43,54)(36,55,44), (1,62,60)(2,49,63)(3,64,50)(4,51,65)(5,66,52)(6,53,67)(7,68,54)(8,55,69)(9,70,56)(10,57,71)(11,72,58)(12,59,61)(13,94,32)(14,33,95)(15,96,34)(16,35,85)(17,86,36)(18,25,87)(19,88,26)(20,27,89)(21,90,28)(22,29,91)(23,92,30)(24,31,93)(37,107,76)(38,77,108)(39,97,78)(40,79,98)(41,99,80)(42,81,100)(43,101,82)(44,83,102)(45,103,84)(46,73,104)(47,105,74)(48,75,106), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108) );

G=PermutationGroup([[(1,84,95),(2,15,104),(3,47,35),(4,86,75),(5,107,18),(6,26,38),(7,78,89),(8,21,98),(9,41,29),(10,92,81),(11,101,24),(12,32,44),(13,83,59),(14,62,45),(16,50,74),(17,48,65),(19,77,53),(20,68,39),(22,56,80),(23,42,71),(25,66,76),(27,54,97),(28,79,69),(30,100,57),(31,72,82),(33,60,103),(34,73,63),(36,106,51),(37,87,52),(40,55,90),(43,93,58),(46,49,96),(61,94,102),(64,105,85),(67,88,108),(70,99,91)], [(1,91,107),(2,108,92),(3,93,97),(4,98,94),(5,95,99),(6,100,96),(7,85,101),(8,102,86),(9,87,103),(10,104,88),(11,89,105),(12,106,90),(13,65,79),(14,80,66),(15,67,81),(16,82,68),(17,69,83),(18,84,70),(19,71,73),(20,74,72),(21,61,75),(22,76,62),(23,63,77),(24,78,64),(25,45,56),(26,57,46),(27,47,58),(28,59,48),(29,37,60),(30,49,38),(31,39,50),(32,51,40),(33,41,52),(34,53,42),(35,43,54),(36,55,44)], [(1,62,60),(2,49,63),(3,64,50),(4,51,65),(5,66,52),(6,53,67),(7,68,54),(8,55,69),(9,70,56),(10,57,71),(11,72,58),(12,59,61),(13,94,32),(14,33,95),(15,96,34),(16,35,85),(17,86,36),(18,25,87),(19,88,26),(20,27,89),(21,90,28),(22,29,91),(23,92,30),(24,31,93),(37,107,76),(38,77,108),(39,97,78),(40,79,98),(41,99,80),(42,81,100),(43,101,82),(44,83,102),(45,103,84),(46,73,104),(47,105,74),(48,75,106)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108)]])

42 conjugacy classes

class 1  2 3A3B3C3D3E3F3G···3Q4A4B6A6B6C6D6E6F6G···6Q12A12B12C12D
order123333333···3446666666···612121212
size112222336···627272222336···627272727

42 irreducible representations

dim11111122222266
type++++--+-
imageC1C2C3C4C6C12S3S3Dic3Dic3C3×S3C3×Dic3C32⋊C6C32⋊C12
kernelC334C12C6×He3C335C4C3×He3C32×C6C33C2×He3C32×C6He3C33C3×C6C32C6C3
# reps11222431318833

Matrix representation of C334C12 in GL8(𝔽13)

90000000
103000000
00001000
00000100
000000121
004410101112
00000030
00100030
,
30000000
39000000
001210000
001200000
000012100
000012000
00903001
00040101212
,
10000000
01000000
001210000
001200000
000012100
000012000
00903001
00040101212
,
24000000
011000000
00376442
0002110211
00758642
00211211211
00121111642
005870211

G:=sub<GL(8,GF(13))| [9,10,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,4,0,0,0,0,1,0,0,10,0,0,0,0,0,1,0,10,0,0,0,0,0,0,12,11,3,3,0,0,0,0,1,12,0,0],[3,3,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,12,12,0,0,9,0,0,0,1,0,0,0,0,4,0,0,0,0,12,12,3,0,0,0,0,0,1,0,0,10,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,9,0,0,0,1,0,0,0,0,4,0,0,0,0,12,12,3,0,0,0,0,0,1,0,0,10,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[2,0,0,0,0,0,0,0,4,11,0,0,0,0,0,0,0,0,3,0,7,2,12,5,0,0,7,2,5,11,11,8,0,0,6,11,8,2,11,7,0,0,4,0,6,11,6,0,0,0,4,2,4,2,4,2,0,0,2,11,2,11,2,11] >;

C334C12 in GAP, Magma, Sage, TeX

C_3^3\rtimes_4C_{12}
% in TeX

G:=Group("C3^3:4C12");
// GroupNames label

G:=SmallGroup(324,98);
// by ID

G=gap.SmallGroup(324,98);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,579,1449,2164,7781]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^12=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*c,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽